
,'VASA- TM- 10 7996

KNOWLEDGE-BASED AUTOMATIC TEST EQUIPMENT

Matthew Cornell

Systems Engineer

National Aeronautics and Space Administration

Electrical Systems Branch (SE-ETD-21)

Kennedy Space Center, Florida

/dA s ,@ -4

7'?

INTRODUCTION

In 1983 NASA at KSC assembled a small

group of engineers with launch operations

and traditional software development ex-

perience. Their job was to determine the

usefulness of then current Artificial

Intelligence techniques in the control and

monitor of Space Shuttle ground support

equipment. The existing control and

monitor System (the Launch Processing

System or LPS) was a major improvement

over the systems used in the Moon program

but is now some ten years old and has not

met all of its design goals. The tradi-

tional programming environment for the LPS

combined with the very limited memory

available in its computers conspired to

produce software which was both very

expensive to produce and to maintain,

limited in capability and difficult to

debug. Clearly the time had come to look

for w3ys to either augment or completely

replace the current LPS.

The project that developed was LES, the

Lox Expert System which is described in

detail by Jamieson (I]. Briefly, LES was a

joint project between NASA engineers and

MITRE Corp. of Bedford, Mass. who was

r_sponsible for teaching AI techniques and

the LISP language to the NASA engineers

and to establish the direction that the

application would take. LES monitors real

time data from the Shuttle Liquid Oxygen

Loading system, analyzes each change for

correctness and performs a rapid diagnosis

of any problems that are detected. Cur-

rently, each countdown is monitored and

work is continuing to perfect and expand

the knowledge base.

In 1984 it became apparent that the code

used by the diagnoser to figure out the

cause of a particular failure (Scarl (2))

could, with a few simple changes, be used

in applications requiring low level (com-

ponent level) control. Instead of infer-

ring what failed component would cause the

discrepant condition, the program would

infer the required state of all control-

ling components and commands in order to

affect the new desired s=ate. In general

it appeared that a system could be

developed that would utilize the complete

functional representation of a system (the

knowledge base, usually taken from

schematics) in a machine-readable form

(Frame Representation Lailguage or FRL) in

order to do most of the control, monitor

and diagnosis functions the engineer could

do with the same information. Given a

machine capable of millions of logical

inferences per second and near-instant

access to the knowledge base, the low

level procedures in KSC's conventional

programs could be reduced drastically.

This would be due to the machines ability

to accept high level, English-like com-

mands and determine what low level com-

mands would have to be sent in order to

accomplish the desired task. It was also

speculated that a portion of the knowledge

base could be built by a program that

"learns" the system based on observed

performance, much like a human does in a

situation where the Schematlc8 are not

available. The resulting project to demon-

strate the above type of control system is

called the Knowledge-based Automatic Test

Equipment or KATE.

THE KATE SYSTEM

Experience with LES generated certain

logical goals for KATE. The desire to use

as much of LES's code as possible coupled

with familiarity with the Lisp language

and the Frame Representation Language

indicated that we should continue to use

these tools in KATE. We also wanted to

develop the system away from the launch

environment in a lab-typ_ setting using

black boxes and commercial computer hard-

ware. Thus a microcomputer runnlng LISP

looked sufficient for our needs. (The

drastic drop in speed as compared to the

LISP machine running LES would be tol-

erated knowing that the code developed

could be ported to the LISP machine if

required by speed-critical applicatlons).

(NASA-TM-lO7_P6) KNGWL EC}GE- BA S F[.)

AUTOMATIC TEST _.QUIPMENT (_,!ASA)

7 p

N92-71059

Unclas

-.o

The following system was selected:

IBM PC-AT computers (3 Mb memory & 8 Mhz

clock speed)

Golden Common Lisp (large memory version

with compiler)

IBM Professional Graphics Adapter (high

resolution graphics display)

General Purpose Interface Bus (computer

communications interface)

Smart Hardware System (hardware interface
via GPIB)

Because the LISP language was not sup-

ported directly by the GPIB software, the

appropriate drivers had to be developed in

LISP and assembly languages in order for

our computer to interface to the system

under test. For the same reasons, drivers

had to be written for the graphics system.

Also, since much of the code written for

LES could be used for KATE, we began the

translation from the Zetalisp language to

the more simple Golden Common Lisp which

would run on the IBM. The translation went

well although the speed dropped about 100

to I. (A complex diagnosis that takes

under eight seconds on LBS takes about

thirteen minutes in KATE.) Compilation of

the functions should give us a five times

increase in speed though our major purpose

was to develop a new control and monitor

system without initial concern for speed.

KATE SOFTWARE OVERVIEW

The system software can be divided into a

number of separate modules. [See figure

1). The modules are tied together and

executed sequentially in the program's

main loop. Briefly, the modules are:

The Knowledge Base- a representation of

the functionality of the system, written

in Lisp and the Frame Representation Lan-

guage (FRL) (3).

The Measurement System- polls all measure-

ments and determines if any have changed.

All changes are placed on a queue to be

examined by the Constraint system.

The Constraint System- gathers from the

queue all changes that have occurred since

the last checking and compares their new

state to a computed expected state based

on the current values in the knowledge

base. Any unexpected conditions call the

Diagnoser, handing it the measurement and

the anomalous value.

The Diagnoser- invoked by the constraint

system. Uses the knowledge base to deter-

mine those components whose failure could

explain the discrepant reading (2).

The Automatic Drawing System- produces

"live" schematic displays giving the user

visibility into the system's current state

and allowing direct user control of in-

dividual objects.

The Command Interpreter- uses a command

and desired reading to determine what

lower-level commands will accomplish the

required goal. Redundancy is activated if

required by a prior component failure.

Also allows procedure running (written as

a series of high-level goals) (4).

The Learning System- creates limited, cor-

rectly structured (FRL) knowledge bases

based on the observable performance of the

system being tested.

The knowledge base, constraint system and

diagnoser have been inherited from the LEE

project, and are documented in other

papers. Reference to these modules will be

solely to explain the control and learning
modules used in KATE.

EXAMPLE OF KNOWLEDGE-BASED CONTROL

Figure 2 shows a typical valve control

system, a simplified version of part Of

KSC's LOX replenish valve. Primary,

secondary and secondary select commands

are used via TTL control logic to drive

relay Kl. KI activates solenoid valve Vl

with power provided by PUSE 1. Closed and

opened limit switch indications provide
feedback. Valve Vl allows 750 PSI GN2 to

flow with a downstream measurement M3

displaying outlet pressure.

The knowledge base corresponding to the

system in figure 2 is shown in figure 3.

The following definitions of the various

"slots" in each frame should demonstrate

that the complete functionality of the

system has been captured in this set of

frames.

DEFRAME XXXX - DEFINE FRAME - defines a

particular frame of information describing

object XXXX.

NOMENCLATURE - contains the name of the

object to use in printed reports or in

screen displays.

AIO - AN INDIVIDOAL OF - used to inherit

qualities from a class to which this ob-

ject belongs.

SOURCE - the object from which this object

gets its enerqy.

SOURCE-PATH - the objects and their re-

lationships between the source and this

object. (Shows how the object is

controlled).

SINKS - objects for which this object is

the SOURCE.

IN-PATH-OF - objects which have

object in their SOURCE-PATH.

this

STATUS - used for analogs to celculate a

value if both the source and source-path

are true.

CVALUE = CURRENT VALUE - latest value of a

measurable object.

DELAY - maximum time in 1/60 seconds be-

tween an input change and an expected

OUtpUt change for this object.

TOLERANCE - absolute maximum allowable

deviation from the expected value.

The FRL provides a selection of functions

to examine & modify slots within a frame.

This allows our programs to search up-

stream and downstream to determine rela-

tionships using the inheritance properties

of the in-path-of and source-path slots.

An example will illustrate the basic steps

the KATE system takes in controlling the

system in Figure 2.

Suppose we would like to flow GN2 to per-

form a purge. With a conventional set of

software we would issue the commands to

turn off the secondary select, turn on the

primary command and check that the open

indication comes on, the closed indication

goes off and that the pressure falls with-

in the appropriate range after a program-

med time delay. If any of the required

checks have failed then a subroutine will

be called to safe the system and a message

will be sent indicating a failure. Alter-

nate commands would have to be sent

manually once the operator has determined

what has failed and what alternates exist.

By specifying the commands to issue and

what measurements to check for after each

issuance, the program writer has

effectively hard-coded the system's func-

tionality and connectivity directly into

the subsystem program. Also, when

composing the conventional program the

author must try to forsee all possible

failures and write subroutines to handle

each case.

In KATE the knowledge of the system has

been explicitly gathered and is completely

described in the knowledge base, which is

accessible to our programs. The result is

that instead of directly issuing the low-

level commands to do a task we let the

machine access the knowledge base, infer

all of the combinations of commands which

will accomplish the desired goal and then

issue the low-level commands itself. Thus

we can simply give a single high-level

command such as: (goal 'M3 750) and let

the machine do the low-level work. The

command interpreter would search the know-

ledge base starting with M3 and determine

what combination of analog and discrete

commands would have to be issued to make

M] read 750, given the current state of

all objects and commands involved. With

most of our systems being redundant, many

alternative methods of accomplishing a

task can exist. Figure 4 shows what op-

tions KATE would display for this example

with the machine in query mode. (In the

normal operating mode the simplest com-

bination of commands to accomplish the

task are sent automatically). The above

description is a much simplified version

of what actually happens when a command is

issued. For a more complete explanation of

the command interpreter's operation see

Jamieson (4).

Note that a number of different high-level
commands could have been issued to

accomplish the purge. We could have asked
for the valve itself (Vl) to read ON or

the actual pressure (PI) to rea_ "/50 PSI.

Alternatively, setting the open indication

ON, the closed indicati0n0FF, or the

relay (KI) ON would have worked just as !

well.

The flexibility gained in issuing high-

level commands only allows the programmer

to very easily create high-level

procedures and completely ignore the dirty

work of specifying what low-level commands
to send and which indications should

react. This is valuable because most !

people write software procedures knowing

the more complicated (high-level) tasks

and writing the low-level procedures

required to accomplish the higher-level

tasks. In this way the procedures become

extremely compact and can be written and

changed quickly. Another advantage offered

by the knowledge based method of control

and monitor is that any hardware !

modifications need only be reflected In

the knowledge base; no changes are

necessary to the control and monitor

portion and all new commands and

indications will automatically be

accounted for.

If a component's current state does not

match the predicted state (determined from

commands that affect the object) then the

diagnoser (2) is invoked and handed the

discrepant frame and state. The dlagnoser

then determines the single object (if

possible) or objects that account for the

current anomaly and places the failed

object on a llst of known constraint

r

failures. The command interpreter

references this list when asked to

accomplish a task by comparing the objects

used in accomplishing the goal with those

frames on the list. If there is a match,

alternate commands ace selected.

A frame can also be put on a "maintain"

list. All detected failures are checked

against the list and if any objects on the

list are affected by the failure, the

machine will activate redundant commands

to put the object back into the condition

to be maintained. This is of high value in

keeping critical components operating in

spite of system failures.

USER INTERFACE

A drawing system has been developed using

the professional graphics display. This

system can draw schematic-type displays

based only on the knowledge base and the

current values within the frames. Any

discrete or analog value change is updated

on the screen automatically. A mouse is

used to run a procedure or to select an

on-screen object. The system then gives

the user a choice of new states, values or

additional displays for that object. Also,

all command and measurement changes are

echoed to a communications window (on the

screen) and, optionally to the printer.

The user can input Lisp functions,

variables, constants, etc. directly from a

Lisp window in order to access the frames,

do mathematics or invoke the command

interpreter manually.

KNOWLEDGE BASE GENERATION

A learning system has been created which

can construct portions of knowledge bases

using observed performance of the system.

To do this a working system is connected

to KATE and the machine is told what

inputs and outputs are available and their

type (analog or discrete). The system then

issues combinations of inputs, each time

looking for measurement reactions and

filing the results in a table. When all

combinations have been tried the table is

evaluated to produce frames representing

the tested system. Currently, simple

combinational digital circuits can be

analyzed to produce complete knowledge

bases. An analog capability will be added

shortly.

CONCLUSION

Using a PC development system with a com-

mercial hardware interface, a frame based

control and monitor system has been suc-

cessfully demonstrated. This knowledge

based control and monitor system offers

many advantages over conventional soft-

ware, some of which include high-level

control procedures, automatic drawing and

automatic detection & diagnosis of

failures. Porting this Common Lisp sof-

tware to a faster Lisp machine would

increase the operating speed tenfold, if

faster reaction times are desired.

The knowledge base we have been using for

testing has been automatically created

using the Learning system although more

complex systems will probably have to be

coded by a combination of hand and
machine.

Potential applications of the KATE system

are numerous and might include space-based

hardware, power plants and process

monitoring in industrial environments.

ACKNOWLEDGMENTS

The KATE project is an ongoing and Joint

effort conducted by the members of the
Shuttle Engineering Directorate at KSC.

REFERENCES

i. Jamieson, J. R., Scar1, E. A. and

Delaune, C. I., A Knowledge Based Expert

System for Propellant System Monitoring at

the Kennedy Space Center, Proc. 22nd Space

Congress, Cocoa Beach, Florida, (April,

1985) 1-9.

2. Scarl, E. X., Jamieson' J' R. and

Delaune, C. I., A Fault Detection and

Isolation Method Applied to Liquid Oxygen

Loading for the Space Shuttle, Proc. 9th

International Joint Conf. Artificial

Intelligence (IJCAI-85) 9 (1985a) 414-416.

3. Roberts, R. B. and Goidstein: I. P',

The FRL manual, HIT A.I. Lab. Memo 409

(September, 1977).

4. Jamieson, J. R., Knowledge-based

Automatic Test Equipment, Proc.

Southcon/86, Orlando, Florida, (March _ 20).

PRINTER

t , DIAGNOSER

_ PROBLEMS

CONSTRAINT

SYSTEM

CHANGES

MEASUREMENT

SYSTEM

MEASUREMENTS

HARDWARE

INTERFACE

_ IEEE-488

SYSTEM

HARDWARE

//////J///
LEARNING

SYSTEM

Y///////_

'I///////I.

LOW
LEVE L

KNOWLEDGE

BASE

(FRAMES)

COMMAND

INTERPRETER

i

_HIGH

II LEVEL
II ¢_ANOS

C PROCEDURE)

HIGH
LEVEL

DRAWING

SYSTEM

USER

INTERFACE

IGRAPH ICS)

FIGURE1. KATE SOFTWARE STRUCTURE

PRIMARY SECONDARY

COMMAND SE LECT

i r-- F-
L

-D

SECONDARY

COMMAND

1

FUSE 1

MI- M2- M3-

CLOSED OPEN PURGE

INDICATION INDICATION PRESSURE

K1

SWI

FUSE 2

FUSE 3

" XD_ER

I

(DEFRAME Vl

(NOMINCLATJRE "Solenoid Value VI)

(AIO DISCRETE-VALVE)

(SOURCE FUSE1)

(SOURCE-PATH (C.STATUS K1))

(SINKS awl))

(DEFRAME K1

(NOMENCLATURE "Relay Kl")

(AIO RELAY)

(SOURCE T)

(SOURCE-PATH (CSTATUS Q3))

(IN-PA_q-OF V1))

(DEFRAME Q3

(NOMENCLATURE "Logical OR Gate Q3")

(AIO OR-GATE)

(SOURCE T)

(S_JRCE-PATH (OR (CSTATUS Q1)

(CSTATUS Q2))

(IN-PATH-OF KI))

(DEFRAM_ Q1

(NOMENCLAq'JRE "Logical A_) Gate QI")

(AIO A_D-GATE)

(SOURCE T)

(SOURCE-PATH

(AND

(CSTATUS PRIMARY-COMMAND)

(NOT (CSTA%'JS SECOmDARY-SELECT))))

(IN-PA_-OF Q3))

(DEFRAME 02

(NOMENCLAI'JRE "Logical AND Gate Q2")

(AIO AND-GATE)

(SOURCE T)

(SOURCE- PATH

(AND

(CSTATUS SECONDARY-COMMAND)

(CSTATUS SECONDARY-SELECT)))

(IN-PATH-OF Q3))

(DEFRAME PRIMARY-COMMAND

(NOMENCLATURE "Primary Command for %11")

(AIO DI S(_ETE-COMMAHD)

(CVALUE OFF)

(IN-PATH-OF Q1))

(DEFRAME SECONDARY-SELECT

(NOMENCLATURE

"Secondary Select Command for Vl")

(AIO DI S<_%ETE-COHMAND)

(CVALUE OFF)

(IN-PATH-OF Q1 Q2))

(DEFRAJ_ SECONDARY-COMMAND

(NOMENCLATURE "Secondary Command for VI")

(AIO DISCRETE-COMMAND)

(CVALUE OFF)

(It_-PATH-OF Q2))

(DE_ SWI

(NOMENCLATURE "Feedback Switch for VI")

(AIO LIMIT-SWITCH)

(SOURCE Vl)

(IN-PATH-OF HI. M2))

(DEFRA_ M1

(NOMENCLATJRE "Closed Indication for Vl")

(AIO DI S(_ETE- MEASUREMENT)

(SOURCE FUSE2)

(SOURCE-PATH (NOT (CSTATUS SWI)))

(CVALUE ON))

(DEFRA_ H2

(NOMENCLA_JRE "Open Indication for V1)

(AIO DI S_ETE-MEASU_)

(SOURCE FUSE2)

(SOURCE-PATH (CSTATUS SW1))

(CVAUJE OFF))

[DEFRAME Pl

(NOMENCLATUI_

"Actual Pressure Downstream of VI")

(AIO PRESSURE)

(SOURCE 750-PSI-GN2)

(S_JRCE-PATH (CSTATUS VI))

(STATUS (CSTATUS 750-PSI-GN2))

(IN-PATH-OF H3))

(D_PRAHE H3

(NOM_K_IATURE

"Pressure Measurement Downstream of VI")

(AIO ANAl kT,-MEASURF..MEMT)

[SOURCE _ USE3)

(SOURCE-PATH (CSTATUS P$))

(CVALUE 0.0)

(TOLERANCE 50.0)

(UNITS "psi"))

(D£FRA/_ FUSE1

(AIO ++USE)

(SINKS Vl)

(SOURCE T))

(DEFRAME LmJSE2

(AIO FUSE)

(SINKS M1 M2)

(SOURCE T))

(DEFRAME FUSE3

(AIO FUSE)

(SINKS M3)

(SOURCE T))

(DEFRA/'_ 750-PSI-GN2

(AIO PRESSURE)

(SOURCE T)

(STATUS 750.0)

(SINKS Pl))

The Knowledge Base for Valve %'I

FIGURE 3

i

(GOAL 'M3 '750.0)

---> I

--->

Itlltllttlllltl|ltllltillllltllllttl|itllililllltl|tlili

Enter option number (enter 0 for no change oc exit).

Enter 99 to view weeded-out options°
> 1

littltllttt#||lll|ll||lltl#t|tl#11|llttlliltlJi#11tltlll

options:
swmmw_Bm

A) print after-effects o£ change(s)

B) recover from change(s)
C) exit

Select option A, B or C.

>A

"HIT THE SPACE BAR TO CONTINUE"

SAMPLE DIALOG WITH KATE

FIGURE 4

